# Instruction



# Since the second seco



# **OVERVIEW**

| MS® and STAMS® Program Overview               | 5  |
|-----------------------------------------------|----|
| atures of a STAMS <sup>®</sup> Lesson         | 4  |
| search Summary                                | 26 |
| ope and Sequence Chart                        | 29 |
| rrelations Charts                             | 31 |
| NCTM Focal Points and Connections             |    |
| Common Core State Standards                   |    |
| mmon Core Standards for Mathematical Practice | 3  |

# **LESSON PLANS**

# Number, Operations, and Algebraic Thinking

### Addition and Subtraction

| Lesson 1       | Understand Addition and Subtraction |
|----------------|-------------------------------------|
| Lesson 2       | Fact Families                       |
| Lesson 3       | Make Tens to Add and Subtract       |
| Lesson 4       | Solve Word Problems                 |
| Lesson 5       | Add Three Numbers                   |
| Base Ten — Cou | Inting                              |
| Lesson 6       | Count to 120                        |
| Base Ten — Pla | ce Value                            |
| Lesson 7       | Place Value                         |
| Lesson 8       | Compare Numbers                     |
| Addition and S | Subtraction — Place Value           |
| Lesson 9       | Add and Subtract Ten                |
| Lesson 10      | Add 2-Digit Numbers                 |
| Lesson 11      | Subtract Tens                       |
| netry          |                                     |

# Geom

**Shapes and Attributes** 

| Lesson 12 | Shapes      | 122 |
|-----------|-------------|-----|
| Lesson 13 | Equal Parts | 130 |

# **Measurement and Data**

| Linear Measurement |             |  |  |
|--------------------|-------------|--|--|
| Lesson 14          | Length      |  |  |
| Time               |             |  |  |
| Lesson 15          | <b>Time</b> |  |  |
| Graphs             |             |  |  |
| Lesson 16          | <b>Data</b> |  |  |

# SCHOOL-HOME CONNECTIONS (Reproducibles)

| Lessons 1-16. |  |  |  |  |  | 33 |
|---------------|--|--|--|--|--|----|
|---------------|--|--|--|--|--|----|

The *CAMS*<sup>®</sup> and *STAMS*<sup>®</sup> program is a powerful integrated program of assessment and data-driven instruction. The program focuses on the critical math concepts and skills that students need to advance to the next grade level. The *CAMS*<sup>®</sup> *Series* and the *STAMS*<sup>®</sup> *Series* work together effectively to ensure that your students gain a solid understanding of the key math concepts and skills. This knowledge will ultimately help them become independent problem solvers and succeed on high-stakes state tests.



### **Features**

Data-driven instruction with a pretest, a post test, and benchmarks (see page 7)

Emphasis on errors as opportunities for learning (see pages 19 and 23)

Highly scaffolded lessons with gradual release of responsibility (see pages 14–25)

Embedded professional development in supportive easy-to-use teacher guide (see pages 14–25)

CAMS<sup>®</sup> and STAMS<sup>®</sup> Program Overview





# Addresses Common Core State Standards

- *STAMS* was created to support Common Core State Standards (CCSS). See Correlations chart on page 31.
- Builds conceptual understanding and procedural fluency, as emphasized by CCSS
- Helps students make connections between related concepts and skills

# Assessment with CAMS® Series

Quickly identify which of the 16 foundational math concepts and skills your students find most difficult and use the results to monitor progress.

- A pretest diagnoses students' strengths and weaknesses and guides their placement in the *STAMS® Instruction Series*.
- Four benchmarks assess class progress throughout the year.
- A post test assesses students' mastery of concepts and skills following instruction with the *STAMS® Series*.
- Tracking forms and charts facilitate data collection and student self-assessment encourages reflection.

# Instruction with STAMS® Series

Provide students with explicit instruction of the 16 foundational math concepts and skills—those topics identified as the most important instructional goals for each grade level.

# Student Book

Designed for the struggling student, lessons are highly visual, engaging, and clearly presented. Each five-part lesson uses three levels of scaffolding to make sure students master the critical math concepts and skills.

- 1. *Scaffolded student support*—Instructional support is removed gradually to build student independence as they move through each lesson.
- 2. *Scaffolded student accountability*—Practice problems build student accountability by requiring students to use increasing degrees of higher-level thinking to analyze and explain their answers.
- 3. *Scaffolded problem-solving experience*—Practice problems slowly increase in difficulty to build student proficiency and confidence.

# **Teacher Guide**

Step-by-step support helps teachers easily differentiate instruction and present each lesson most effectively.

- Modeling helps teachers introduce each skill simply and confidently.
- Useful tips and embedded professional development guide instruction.
- Detailed easy-to-follow instructions minimize planning time.

# Implementing CAMS<sup>®</sup> Assessments and STAMS<sup>®</sup> Lessons

# **Option I: Data-Driven Instruction**

### **1** Diagnose with CAMS<sup>®</sup> Pretest

• Use the *CAMS*<sup>®</sup> Pretest to place students in the *STAMS*<sup>®</sup> Series. Results identify which *STAMS*<sup>®</sup> lessons students need.

### 2 Instruct with STAMS<sup>®</sup> Lessons

• Pinpoint a specific lesson in the *STAMS*<sup>®</sup> student book to remediate an area that needs improvement.

### 3 Monitor Progress with CAMS® Benchmarks

• Assess progress in all 16 foundational topics with the four 16-item *CAMS*<sup>®</sup> Benchmarks at four points during the year.

### 4 Assess Mastery with CAMS<sup>®</sup> Post Test

• Use the *CAMS*<sup>®</sup> Post Test to assess students' mastery of the 16 math concepts and skills following instruction with *STAMS*<sup>®</sup>.

# **Option 2: Comprehensive Instruction**

For implementation of *CAMS*<sup>®</sup> and all 16 *STAMS*<sup>®</sup> lessons, follow this suggested pacing chart. Allocate 19 weeks, with each *STAMS*<sup>®</sup> lesson spanning 5 days. (See the Week at a Glance on page 10 for more details.)

# Suggested Pacing Chart for Book A of the CAMS<sup>®</sup> and STAMS<sup>®</sup> Program

| Day(s) | Lesson | CAMS®<br>Assessment<br>Series | STAMS®<br>Instruction<br>Series | Minutes   |
|--------|--------|-------------------------------|---------------------------------|-----------|
| 1–5    |        | CAMS® Prete                   | st                              | 30-45/day |
| 6-10   | 1      | Understand A<br>Subtraction   | ddition and                     | 30-45/day |
| 11–15  | 2      | Fact Families                 |                                 | 30-45/day |
| 16–20  | 3      | Make Tens to<br>Subtract      | Add and                         | 30-45/day |
| 21-25  | 4      | Solve Word Pr                 | oblems                          | 30–45/day |
| 26     |        | CAMS® Bench                   | nmark l                         | 30-45     |
| 27–31  | 5      | Add Three Nu                  | umbers                          | 30-45/day |
| 32-36  | 6      | Count to 120                  |                                 | 30-45/day |
| 37-41  | 7      | Place Value                   |                                 | 30-45/day |
| 42-46  | 8      | Compare Numbers               |                                 | 30-45/day |
| 47     |        | CAMS <sup>®</sup> Benchmark 2 |                                 | 30-45     |
| 48-52  | 9      | Add and Subtract Ten          |                                 | 30-45/day |
| 53-57  | 10     | Add 2-Digit Numbers           |                                 | 30–45/day |
| 58-62  | 11     | Subtract Tens                 |                                 | 30-45/day |
| 63-67  | 12     | Shapes                        |                                 | 30-45/day |
| 68     |        | CAMS® Bench                   | nmark 3                         | 30-45     |
| 69–73  | 13     | Equal Parts                   |                                 | 30-45/day |
| 74-78  | 14     | Length                        |                                 | 30-45/day |
| 79-83  | 15     | Time                          |                                 | 30-45/day |
| 84-88  | 16     | Data                          |                                 | 30-45/day |
| 89     |        | CAMS® Bench                   | nmark 4                         | 30-45     |
| 90-94  |        | CAMS® Post                    | Гest                            | 30-45/day |

Note: Allocate 15 minutes more per day if *STAMS*<sup>®</sup> additional activities are used in conjunction with each lesson.

# **CAMS® and STAMS® Grade-Level Foundational Skills**

The focus of the STAMS<sup>®</sup> Series progresses from number sense and computational skills in early grades to pre-algebra in later grades.

All 16 concepts and skills covered in each level of the *STAMS*<sup>®</sup> *Series* align to NCTM Focal Points and Connections for that grade. Lesson topics have been carefully sequenced so students move from basic skills to more complex content within each grade and between grades as well.

### Book A (Grade I)

Understand Addition and Subtraction Fact Families Make Tens to Add and Subtract Solve Word Problems Add Three Numbers Count to 120 Place Value **Compare Numbers** Add and Subtract Tens Add 2-Digit Numbers Subtract Tens Shapes Equal Parts Length Time Data

### Book E (Grade 5)

Multiply 3-Digit Numbers Divide Mentally Estimate Quotients I-Digit Divisors Zeros in the Quotient 2-Digit Divisors Understand Mixed Numbers Add and Subtract Like Fractions **Compare Unlike Fractions** Add and Subtract Unlike Fractions Add and Subtract Mixed Numbers Add and Subtract Decimals Area Surface Area Understand Volume Line Graphs

### Book B (Grade 2)

**Counting Patterns** Place Value **Compare Numbers** Mental Math Addition Strategies Subtraction Strategies Solve Word Problems Add and Subtract to 1,000 Arrays Equal Parts of Shapes Length Add and Subtract Length Time Money Data and Line Plots Graphs

### Book F (Grade 6)

Multiply Whole Numbers by Fractions **Multiply Fractions** Divide Whole Numbers by Fractions **Divide Fractions by Fractions** Multiply and Divide by Powers of Ten **Multiply Decimals** Divide Decimals by Whole Numbers Divide by Decimals Understand Ratios Understand Percent Unit Rates Ratios in Tables of Data Solve Equations Using Number Sense Solve Equations Using Inverse Operations Use Formulas Volume

### Book C (Grade 3)

Place Value Add and Subtract **Multiplication Concepts** Fact Strategies More Fact Strategies **Division Concepts** Fact Families Fraction Concepts Model Equivalent Fractions **Benchmark Fractions Comparing Fractions** Fractions Greater Than I Plane Figures Length Perimeter Pictographs and Bar Graphs

### Book G (Grade 7)

Understand Integers Add and Subtract Integers Multiply and Divide Integers **Evaluate Expressions** Solve Linear Equations Equations with Rational Numbers Proportional Relationships **Solve Proportions Rate Problems** Percent as a Ratio Percent Problems Similarity Circles Cylinders Circle Graphs Theoretical Probability

### Book D (Grade 4)

**Multiplication Properties Multiply Mentally** Multiply by I-Digit Numbers Multiply by 2-Digit Numbers Relate Division to Multiplication Divide Without Regrouping Divide with Regrouping **Equivalent Fractions Simplify Fractions** Decimal Place Value Compare and Order Decimals **Relate Decimals to Fractions** Angles Understand Area Area of Rectangles Line Plots

### Book H (Grade 8)

**Exponents** Square Roots Solve Two-Step Equations Two-Step Equations with Rational Numbers Linear and Nonlinear Equations Slope **Graph Linear Equations** Solve Systems Graphically Solve Systems Algebraically Special Pairs of Angles **Angle Sums Triangle Similarity** Pythagorean Theorem **Distance Formula** Mean, Median, Range Scatter Plots

### Addresses Common Core State Standards

- *STAMS* was created to support Common Core State Standards (CCSS). See Correlations chart on page 31.
- Builds conceptual understanding and procedural fluency, as emphasized by CCSS
- Helps students make connections between related concepts and skills

### CAMS<sup>®</sup> and STAMS<sup>®</sup> Program Overview

# **STAMS®** Instruction Overview

Each level of the *STAMS*<sup>®</sup> *Series* has 16 interrelated lessons designed to help students build mathematical competency. Emphasizing depth over breadth, each five-day, five-part lesson targets two closelyrelated aspects of a single concept or skill. Highly scaffolded lessons offer gradual release of responsibility from the teacher to the student. Part One and Part Two introduce the skill with modeled and guided instruction. Part Three and Part Four (modeled and guided practice) and Part Five (independent practice) have students work with growing accountability for their learning as they practice and apply the skills taught.

STAMS<sup>®</sup> lessons are optimally designed to be used in conjunction with the CAMS<sup>®</sup> assessments, as described on page 9. (See the CAMS<sup>®</sup> teacher guide for more detail.) However, teachers have found that the built-in flexibility also makes STAMS<sup>®</sup> lessons perfect for a variety of other uses.

**Tip:** *STAMS*<sup>®</sup> lessons are best used with teacher guidance, as students learn best when they are directed by knowledgeable, supportive teachers. However, the student book lessons are written to be inviting and accessible even to struggling students. If you do assign *STAMS*<sup>®</sup> lessons as independent class work, be sure to circulate and monitor students as they work.

# Week at a Glance

Suggested Lesson Pacing

|                                   | Monday                                                                  | Tuesday                                                                 |  |
|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
|                                   | modeled and guided instruction                                          |                                                                         |  |
|                                   | Part One                                                                | Part Two                                                                |  |
| Direct instruction                | Introduce new skill<br>with student book<br>pages.<br><b>20 minutes</b> | Introduce new skill<br>with student book<br>pages.<br><b>20 minutes</b> |  |
| Independent work                  | Practice new skill.                                                     | Practice new skill.                                                     |  |
|                                   | 10 minutes                                                              | 10 minutes                                                              |  |
| Assessment                        | Check <i>Your Turn</i> answer.                                          | Check <i>Your Turn</i> answer.                                          |  |
| Additional Activity<br>(optional) | Hands-on Activity                                                       | Reteaching Activity                                                     |  |
|                                   | 15 minutes                                                              | 15 minutes                                                              |  |

| Wednesday                                              | Thursday                                                   | Friday                                                                          |
|--------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|
| modeled and gu                                         | independent<br>practice                                    |                                                                                 |
| Part Three                                             | Part Four                                                  | Part Five                                                                       |
| Model multiple-<br>choice problem;<br>analyze answers. | Model extended-<br>response problem.                       |                                                                                 |
| 10 minutes                                             | 10 minutes                                                 |                                                                                 |
| Practice solving<br>multiple-choice<br>problems.       | Practice solving<br>extended-response<br>problem.          | Solve problems in test-prep format.                                             |
| 20 minutes                                             | 20 minutes                                                 | 30 minutes                                                                      |
| Check <i>Your Turn</i> answers.                        | Check <i>Your Turn</i> answer.                             | Check Your Turn<br>answers.<br>Use Assessment and<br>Remediation.<br>15 minutes |
| Vocabulary Activity                                    | Real-World<br>Connection plus<br>School-Home<br>Connection | Challenge Activity                                                              |
| 15 minutes                                             | 15 minutes                                                 | 15 minutes                                                                      |

# **Alternative Implementations**

Other scenarios for using the *STAMS*<sup>®</sup> lessons with your class include the following:

# Whole Group (at grade level)

*State test review*—Use the *STAMS*<sup>®</sup> lessons as a review for the entire class. The 16 weeks of lessons allow you to finish well before your state test date.

# Small Group (at or below grade level)

*Reteaching support*—Use the *STAMS*<sup>®</sup> lessons with small groups to reteach skills that students are still struggling to master. See pages 12–13 for more information.

# Individual (at or below grade level)

*Tutoring or independent work*—As you become aware of specific gaps in a student's background knowledge, assign the corresponding *STAMS*<sup>®</sup> lesson.

# **Differentiating Instruction with the STAMS® Series**

# Knowing how and when to differentiate

Effective differentiation is based on identifying where students are struggling. The ongoing assessment features help you stay informed about student progress.

- Observe student work with *Your Turn* on a daily basis to see which students need additional support or remediation.
- Use *Error Alerts* to help recognize and correct common mistakes and misconceptions as soon as they surface.
- Use Assessment and Remediation to identify misconceptions or gaps in understanding at any point in the lesson. The activities listed here provide suggestions for individual, small-group, or whole class remediation (see page 23).

# Using STAMS<sup>®</sup> Lesson Features for Differentiation

*STAMS*<sup>®</sup> lessons support several approaches to differentiated instruction. Work with small groups or individuals as needed by taking advantage of these lesson features.

### For ELL students

- For any students who struggle with the language of math, preview math vocabulary (see page 15).
- Throughout the instruction, refer to *ELL Support* tips that alert you to potential language obstacles.
- Use the *Vocabulary Activity* to help students tie new math terms to words they already understand.

### For struggling students

• Use the *Hands-on Activity*, *Reteaching Activity*, and *Real-World Connection* to give students other ways to access the skill.

### For confident students

• Provide students an opportunity to extend their understanding of the concepts in the lesson with the *Challenge Activity*.



CAMS® and STAMS® Program Overview

# Using Related STAMS® Lessons to Remediate

*STAMS*<sup>®</sup> lessons are sequenced within each grade, and from grade to grade, to make instruction easy at the appropriate level. For any particular topic, use the Related *STAMS*<sup>®</sup> Lessons feature in the teacher guide to find a lesson, from the same grade level or from an earlier grade, that meets the student's needs.

### Review within the grade level (Books A-H)

- If a student isn't succeeding with a lesson, your first resource is reviewing prerequisite skills in related lessons in the same book. In most cases these skills were taught in an earlier lesson.
- A careful review of Part One and Part Two of Related *STAMS®* Lessons can help a student quickly get back on track.

### Review at a lower grade level (Books B-H)

a the concept of part +

ofy equal parts.

• Book A – Lesson 2

• Book A – Lesson 12

CABULARY

24

ecognize rectangles and circles.

**RELATED STAMS® LESSONS** 

Fact Families teaches about the concept

of part + part = whole, using addition.

Shapes teaches basic geometric shapes,

one of 2 equal parts

including rectangles and circles.

- Sometimes lessons cover prerequisite skills from a previous grade's book.
- Again, a review of Part One and Part Two of Related *STAMS*<sup>®</sup> Lessons can help a student quickly get back on track.
- A student who frequently needs to review material from a previous level may need consistent instruction at that level before that student can succeed in the core program at grade level.
- Consider administering the *CAMS*<sup>®</sup> Pretest from the previous level. These results will help you place the student more appropriately.

To review skills from related lessons, you might:

• Use the appropriate student book lesson and work with the student through either Part One and Part Two, or all five parts.

# Lesson 13 EQUAL PARTS

### LESSON OBJECTIVES

- Child will learn to:Partition circles and rectangles into two and four equal parts. (CCSS 1.G.3)
- Describe the parts using the words *halves* and *fourths* and describe one part as one half or one fourth of the whole. (CCSS 1.G.3)

### PREREQUISITES

Shapes and

- Children should be able to:
- Understand the concept of part + part = whole.
- Identify equal parts.
   Recognize rectangles and circles.

### 8.....

### **ED** STAMS<sup>®</sup> LESSONS Vesson 2

*ract Families* teaches about the concept of part + part = whole, using addition.

• Book A – Lesson 12 Shapes teaches basic geometric shapes, in ding rectangles and cipeles.

### MATH BACKGROUND

In this lesson, children learn about equal p this context, *equal* means *the same shape* ar In Grade 2, children will see the same shap partitioned in different ways so that they c to recognize that equal parts can be differe shapes within the whole.

Understanding equal parts will be necessal learning fraction concepts in later grades. O will use shaded models to compare parts o whole. They will also be building a founda using division and multiplication. When the to "break apart" one whole into equal part are learning that division is an operation th separates a total into equal-sized groups. Multiplication is the operation that joins g equal size to get a total. Dividing rectangle equal parts lays the foundation for using a model multiplication by showing equal row of items.

This lesson uses shaded models to teach th concept of equal parts. Different models (c and rectangles) will be used to show that w can be different, and therefore parts of wb be di This 12-page section guides teachers through a sample lesson plan from the *STAMS*<sup>®</sup> teacher guide, which shows facsimiles of the student book lesson. Numbered boxes call out and describe the key features in both the teacher guide and student book.

# INTRODUCTION





# **Best Practices**

### Math Vocabulary

Knowledge of math terminology is critical to students' understanding of new concepts and skills. To master math vocabulary, students must see and use the words in context frequently, both orally and in writing. Through consistent modeling of this same behavior as you instruct, students are more likely to adopt this practice.

- As students encounter new terms in text, model the correct pronunciation of each word and have students repeat the word.
- Suggest that students underline math terms they do not understand and review them together.
- Encourage students to use math terms whenever they are communicating their ideas about math.

Part One and Part Two have identical formats and features.

# PART ONE



Features of a STAMS® Lesson

# **Student Book**



**Focus Question:** Sets a purpose for student learning. Gets students thinking about the math concept/skill they will investigate in Explore/Think/Connect.

2

**Explore/Think/Connect:** Provide students with a proven routine to apply to all math problems. **Explore** activates students' prior knowledge and introduces the concept/skill. **Think** presents leading questions or statements to get students thinking about the concept/skill. **Connect** answers the focus question.

3

**Let's Talk:** Develops students' ability to communicate effectively about math through an engaging peer-learning activity.

4

**Think It Through:** Walks students through the thinking process for solving an example problem.

**Your Turn:** Reinforces instruction with independent practice.

# **Teacher Guide**

6

8

At a Glance: Sums up what students do in each lesson part.

**Step by Step:** Provides an explicit walk-through of the steps for guiding students through each lesson part.

**ELL Support:** Targets at point-of-contact a language issue that may be affecting English language learners' ability to understand the math.

**Tip:** Provides on-the-spot information the teacher can use to build students' understanding of the concept/skill.

**Error Alert:** Addresses common errors or misconceptions that lead students to an incorrect answer.

# Modeled & Guided Instruction

### **Teacher Led**

After prompting students to tap into their prior knowledge, the teacher uses step-by-step examples to model the new concept/skill and guide instruction.

# **Best Practices**

# Think-Aloud

The ability to verbalize mathematical thinking and strategies to others strengthens conceptual understanding and problem-solving skills.

- To foster effective discussion, plan carefully when grouping students for Let's Talk. Consider skill levels, social skills, and English language proficiency.
- Circulate and provide tips or encouragement as students work together to discuss math ideas. Guide the discussion as needed.
- During Think It Through, allow students to work in pairs or small groups and talk aloud as they follow the steps to solve the problem.

Features of a STAMS® Lesson

# **COMPONENTS OF MATH INSTRUCTION**

| Math Strategies                                                                                                                                                                                                                                                                                                                                                         | Examples in STAMS <sup>®</sup> Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Research Says                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Computational Fluency</b><br>Computational fluency is having<br>recall of number facts and knowledge,<br>and the ability to apply multiple<br>computational methods.                                                                                                                                                                                                 | <b>Student Book</b><br>Problems in each lesson part<br>reinforce grade appropriate<br>methods for computing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "Efficient, accurate computational fluency<br>is key to students' success in higher-level<br>mathematics necessary for the workplace."<br>— National Research Council, 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Conceptual Understanding</b><br>Conceptual understanding is the<br>knowledge of why math processes<br>and rules work.                                                                                                                                                                                                                                                | <b>Student Book</b><br>Students develop conceptual<br>understanding in Part One and<br>Part Two and demonstrate their<br>knowledge in Part Three, Part Four,<br>and Part Five.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "Students with conceptual understanding<br>know more than isolated facts and<br>methods. They understand why a<br>mathematical idea is important and the<br>kinds of context problem-solving in which<br>it is useful."<br>— National Research Council, 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Error Analysis</b><br>Error analysis is an explanation of<br>the patterns of mistakes students<br>make. It allows teachers to provide<br>targeted instruction that will help<br>correct the errors.                                                                                                                                                                  | <ul> <li>Student Book</li> <li>Part Three: Check</li> <li>Teacher Guide</li> <li>Part One and Part Two: Error<br/>Alert feature</li> <li>Part Three: Answer Analysis</li> <li>Assessment and Remediation chart</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "Research has shown that building upon<br>students' prior knowledge and directly<br>addressing misconceptions can lead to<br>increased learning."<br>— Swan, 2002; Askew, 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Math Vocabulary<br>Math vocabulary is the group of<br>content-area words, or Tier 3 words,<br>that are most often specific to math<br>text and used rarely in other contexts.<br>Controlled Vocabulary<br>Controlled vocabulary is the use of<br>words at a lower reading level. It<br>allows students to learn new concepts<br>without struggling with reading issues. | <ul> <li>Student Book</li> <li>Students must use math language<br/>in their explanations for solving the<br/>extended-response problems<br/>in Part Four and Part Five.</li> <li>Math vocabulary words are<br/>boldfaced.</li> <li>Key terms are defined explicitly.</li> <li>The Let's Talk activities in Part<br/>One and Part Two provide<br/>opportunities for students to use<br/>math language in context.</li> <li>Each lesson uses controlled<br/>vocabulary to make new math<br/>knowledge more accessible and<br/>understandable.</li> <li>Teacher Guide</li> <li>Vocabulary Activity</li> <li>Definitions of key math terms<br/>are provided for each lesson.</li> </ul> | "Tier Three words should be taught at<br>point of contact, or as they occur in text."<br>— Beck, McKeown, & Kagan, 2002<br>"Without a basic knowledge of these<br>terms, students will have difficulty<br>understanding information they read or<br>hear. Knowledge of important terms is<br>critical to understanding any subject."<br>— Marzano & Pickering, 2005<br>"Research has demonstrated that<br>vocabulary learning occurs most<br>successfully through instructional<br>environments that are language-rich,<br>actively involve students in using<br>language, require that students both<br>understand spoken or written words and<br>also express that understanding orally<br>and in writing, and require students to<br>use words in multiple ways over extended<br>periods of time."<br>— CCSSO/NGA, 2010 |

For a full report and bibliography, go to CurriculumAssociates.com/STAMS/research.

# **COMPONENTS OF MATH INSTRUCTION (continued)**

| Math Strategies                                                                                                                                                                                                                                       | Examples in STAMS <sup>®</sup> Series                                                                                                                                              | Research Says                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Meaningful Practice</b><br>Meaningful practice is problem solving<br>that requires students to apply learned<br>concepts and skills.                                                                                                               | <ul> <li>Student Book</li> <li>Part One through Part Four:<br/>Your Turn</li> <li>Part Five: Independent practice</li> </ul>                                                       | "Meaningful practice: to gain deeper<br>understanding of topic — practice<br>that focuses on building conceptual<br>understanding related to skills and<br>procedures."<br>— Marzano et al, 2000                                                                                                                                                                             |
| <b>Multiple Representations</b><br>Multiple representations are the ways in<br>which a teacher or student represents a<br>math idea, including spoken, written,<br>symbolic, and concrete formats.                                                    | <b>Student Book</b><br>Symbolic, pictorial, spoken, and<br>written methods are used throughout<br>each lesson part to instruct students.                                           | "Each of the different types of<br>representation adds a new layer or a new<br>dimension to the understanding of the<br>concept being represented. Some students<br>find some representations easier to<br>understand than others."<br>— Mendieta, 2006                                                                                                                      |
| <b>Procedural Knowledge</b><br>Procedural knowledge is the<br>understanding of when and how<br>to use mathematical procedures<br>effectively. It aids in automatic recall<br>of facts, allowing for further study of<br>new math concepts and skills. | <b>Student Book</b><br>Through scaffolding, students<br>develop procedural knowledge in<br>Part One through Part Four. By<br>Part Five they become independent<br>problem solvers. | "Students need to be efficient and accurate<br>in performing basic computation with<br>whole numbers without having to rely<br>on tables or other aids. They also need<br>to know reasonably efficient and accurate<br>ways to add, subtract, multiply, and divide<br>multi-digit numbers, both mentally and<br>with pencil and paper."<br>— National Research Council, 2001 |

# **ASSESSMENT AND INTERVENTION**

| Strategies and Features                                                                                                                                                                              | Examples in CAMS <sup>®</sup> and<br>STAMS <sup>®</sup> Series                                                                                                                                                             | Research Says                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Data-driven Instruction</b><br>Data-driven instruction is the use<br>of instructional decisions based on<br>the systematic collection of data that<br>reflects students' understanding.           | <ul> <li>CAMS<sup>®</sup> and CAMS<sup>®</sup> Online</li> <li>1 Pretest</li> <li>4 Benchmarks</li> <li>1 Post Test</li> </ul>                                                                                             | "Districts and schools that are improving<br>generally show a commitment to the use<br>of student assessment data to diagnose<br>weaknesses and guide improvement efforts."<br>— U.S. Department of Education, 2010                         |
| <b>Progress Monitoring</b><br>Progress monitoring is a strategy<br>that involves frequent, in-classroom<br>progress checks of students'<br>understanding and mastery of math<br>concepts and skills. | <ul> <li>Student Book</li> <li>Part One through Part Four:<br/>Your Turn</li> <li>Part Five: Independent practice</li> <li>CAMS® and CAMS® Online</li> <li>1 Pretest</li> <li>4 Benchmarks</li> <li>1 Post Test</li> </ul> | "Teachers' regular use of formative<br>assessments improves their students'<br>learning, especially if teachers have<br>additional guidance on using the<br>assessment results to design and<br>individualize instruction."<br>— NMAP, 2008 |

# **NCTM PROCESS STANDARDS**

| Process Standards                                                                                                                                                                                                                                                                                                        | Examples in STAMS <sup>®</sup> Series                                                                                                                                                                                                                              | Research Says                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Communication</b><br>Students use the language of math to<br>accurately express their mathematical<br>ideas to others, and analyze and<br>evaluate the mathematical thinking<br>and strategies of others.                                                                                                             | <ul> <li>Student Book</li> <li>Part One and Part Two: Let's Talk</li> <li>Part Three: Check</li> <li>Part Four and Part Five:<br/>Explanation of solution</li> <li>Teacher Guide</li> </ul>                                                                        | "Encouraging math talk so that students<br>can clarify their strategies to themselves<br>and others, and compare the benefits and<br>limitations of alternate approaches to<br>problem solving."<br>— National Research Council, 2001                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                          | <ul><li>ELL Support</li><li>School-Home Connection</li><li>Vocabulary Activity</li></ul>                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Connections</b><br>Students recognize and use<br>connections among mathematical<br>ideas, such as linking knowledge of<br>the subtraction of whole numbers<br>to the subtraction of decimals or<br>fractions. Students also connect math<br>concepts to their daily lives, and to<br>other subjects, such as science. | <ul> <li>Student Book</li> <li>Part One and Part Two: Explore,<br/>Think, and Connect</li> <li>Teacher Guide</li> <li>Math Background</li> <li>Real-World Connection</li> </ul>                                                                                    | "Connections are most useful when<br>they link related concepts and methods<br>in appropriate ways. Appropriate ways<br>include methods of extending the<br>understanding of one math concept to<br>another (using multiple representations).<br>Rote memorization does not lead to<br>understanding and building connections."<br>— National Research Council, 2001 |
| <b>Problem Solving</b><br>Students build new math knowledge<br>through problem solving and use<br>various strategies to solve problems<br>in math and in other contexts.                                                                                                                                                 | <ul> <li>Student Book</li> <li>Part One, Part Two, Part Three,<br/>Part Four: Your Turn</li> <li>Part Five: Independent practice</li> </ul>                                                                                                                        | "Problem solving is an integral part of<br>all mathematics learning. In everyday life<br>and in the workplace, being able to solve<br>problems can lead to great advantages."<br>— NCTM, 2000                                                                                                                                                                        |
| <b>Reasoning and Proof</b><br>Students recognize, use, and evaluate<br>various types of reasoning and methods<br>of proof. Reasoning enables students to<br>make sense of new mathematical ideas.<br>Proofs build a logical argument based<br>on known facts.                                                            | <ul> <li>Student Book</li> <li>Part One and Part Two: Let's Talk and Think It Through</li> <li>Part Three: Solve and Check</li> <li>Part Four and Part Five: Explanation of solution</li> <li>Teacher Guide</li> <li>Many teacher tips show how to help</li> </ul> | "Knowing particular mathematical ideas<br>and procedures as mere fact or routine is<br>insufficient for using those ideas flexibly<br>in diverse cases. Making mathematics<br>reasonable means making it reasoned and,<br>therefore, known in useful and usable ways."<br>— NCTM, 2003                                                                               |
| <b>Representations</b><br>Students communicate, clarify, or<br>extend mathematical ideas through<br>concrete or visual models.<br>A representation may be a number<br>sentence, manipulatives, diagrams<br>or graphs and/or symbols.                                                                                     | <ul> <li>students reason through a problem.</li> <li>Student Book</li> <li>Part One and Part Two: Use of visual models</li> <li>Part Four and Part Five: Show</li> </ul>                                                                                           | "Intervention materials should<br>include opportunities for students to<br>work with visual representations of<br>mathematical ideas and interventionists<br>should be proficient in the use of visual<br>representations of mathematical ideas."<br>— Gersten et al, 2009                                                                                           |

# **Correlations Charts**

**NCTM Focal Points and Connections** The chart below indicates the lessons in *STAMS*<sup>®</sup> *Book A* that provide instruction for the NCTM Focal Points and related Connections for grade 1. (For correlations between the NCTM Process Standards and the *STAMS*<sup>®</sup> *Series*, see page 28 of the teacher guide.)

| NCTM Focal Points and Connections for Grade 1                                                                                                                                                                              | STAMS®<br>Book A<br>Lessons |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| FOCAL POINTS                                                                                                                                                                                                               |                             |
| Number and Operations and Algebra: Children develop strategies for adding and subtracting whole numbers using a variety of models.                                                                                         | 3, 4, 5                     |
| Number and Operations: Children develop an understanding of whole number relationships, including grouping in tens and ones, to compare and order whole numbers.                                                           | 6, 7, 8                     |
| <b>Geometry:</b> Children recognize figures from different perspectives and orientations, describe their geometric attributes and properties, and determine how they are alike and different.                              | 12, 13                      |
| CONNECTIONS                                                                                                                                                                                                                |                             |
| Number and Operations and Algebra: Children use mathematical reasoning to solve two-digit addition and subtraction problems with strategies that they understand and can explain.                                          | 9, 10, 11                   |
| Measurement and Data Analysis: Children measure by laying multiple copies of a unit end and then count the units by using groups of tens and ones, and represent measurements and discrete data in picture and bar graphs. | 14, 15, 16                  |
| Algebra: Through identifying, describing, and applying number patterns and properties in developing strategies for basic facts, children learn about other properties of numbers and operations, such as odd and even.     | 1, 2                        |

**Common Core State Standards** The chart below correlates the lessons in *STAMS*<sup>®</sup> *Book A* with Common Core State Standards for grade 1 mathematics.

| Common Core State Standards for Grade 1 Mathematics |                                                                                                                                                                                                                                                                                             |                                     |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| ccss                                                | Description                                                                                                                                                                                                                                                                                 | <i>STAMS®<br/>Book A</i><br>Lessons |  |  |
| Operatio                                            | ns and Algebraic Thinking                                                                                                                                                                                                                                                                   |                                     |  |  |
| 1.0A.1                                              | Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions.                                                                                                | 4                                   |  |  |
| 1.OA.2                                              | Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20.                                                                                                                                                                                    |                                     |  |  |
| 1.OA.3                                              | Apply properties of operations as strategies to add and subtract.                                                                                                                                                                                                                           |                                     |  |  |
| 1.OA.4                                              | Understand subtraction as an unknown-addend problem.                                                                                                                                                                                                                                        | 1                                   |  |  |
| 1.OA.5                                              | Relate counting to addition and subtraction.                                                                                                                                                                                                                                                | 1                                   |  |  |
| 1.OA.6                                              | Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten; decomposing a number leading to a ten; using the relationship between addition and subtraction; and creating equivalent but easier or known sums. | 2, 3                                |  |  |

**Correlations Charts** 

| Common Core State Standards for Grade 1 Mathematics |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| ccss                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STAMS®<br>Book A<br>Lessons |  |
| Operatio                                            | ns and Algebraic Thinking (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |  |
| 1.0A.7                                              | Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false.                                                                                                                                                                                                                                                                                                                                                                                             | 1                           |  |
| 1.0A.8                                              | Determine the unknown whole number in an addition or subtraction equation relating to three whole numbers.                                                                                                                                                                                                                                                                                                                                                                                                             | 2                           |  |
| Number                                              | and Operations in Base Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |  |
| 1.NBT.1                                             | Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.                                                                                                                                                                                                                                                                                                                                                                   | 6                           |  |
| 1.NBT.2                                             | Understand that the two digits of a two-digit number represent amounts of tens and ones.                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                           |  |
| 1.NBT.3                                             | Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.                                                                                                                                                                                                                                                                                                                                                                        | 8                           |  |
| 1.NBT.4                                             | Add within 100, including adding a two-digit number and a one-digit number, and adding a two-<br>digit number and a multiple of 10, using concrete models or drawings and strategies based on<br>place value, properties of operations, and/or the relationship between addition and subtraction;<br>relate the strategy to a written method and explain the reasoning used. Understand that in adding<br>two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to<br>compose a ten. | 10                          |  |
| 1.NBT.5                                             | Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.                                                                                                                                                                                                                                                                                                                                                                                       | 9                           |  |
| 1.NBT.6                                             | Subtract multiples of 10 in the range 10–90 from multiples of 10 in the range 10–90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.                                                                                                                                                                 | 11                          |  |
| Measure                                             | ment and Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |  |
| 1.MD.1                                              | Order three objects by length; compare the lengths of two objects indirectly by using a third object.                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                          |  |
| 1.MD.2                                              | Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps.                                                                                                                                                                                                                                      | 14                          |  |
| 1.MD.3                                              | Tell and write time in hours and half-hours using analog and digital clocks.                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                          |  |
| 1.MD.4                                              | Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.                                                                                                                                                                                                                                                                                         | 16                          |  |
| Geomet                                              | γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |  |
| 1.G.1                                               | Distinguish between defining attributes versus non-defining attributes; build and draw shapes to possess defining attributes.                                                                                                                                                                                                                                                                                                                                                                                          | 12                          |  |
| 1.G.3                                               | Partition circles and rectangles into two and four equal shares, describe the shares using the words <i>halves, fourths,</i> and <i>quarters,</i> and use the phrases <i>half of, fourth of,</i> and <i>quarter of.</i> Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.                                                                                                                                             | 13                          |  |

*Common Core State Standards for Mathematics* © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

# **Common Core Standards for Mathematical Practice**

| Standard                                                            | Examples in STAMS <sup>®</sup> Series                                                                                                                                                                   |                                                                                                                                                            |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Make sense of problems and<br>persevere in solving them.         | <ul> <li>Student Book</li> <li>Part One and Part Two Focus<br/>Question</li> <li>Part One, Part Two, Part Three,<br/>Part Four: Your Turn</li> <li>Part Five: Independent Practice</li> </ul>           | <b>Teacher Guide</b><br>• Part Three: Answer Analysis<br>• Challenge Activity                                                                              |
| 2. Reason abstractly and quantitatively.                            | <ul> <li>Student Book</li> <li>Part One and Part Two: Let's Talk<br/>and Think It Through</li> <li>Part Three: Solve and Check</li> <li>Part Four and Part Five: Explanation<br/>of solution</li> </ul> | <ul> <li>Teacher Guide</li> <li>Many teacher tips show how to help students reason through a problem.</li> </ul>                                           |
| 3. Construct viable arguments and critique the reasoning of others. | <ul> <li>Student Book</li> <li>Part One and Part Two: Let's Talk</li> <li>Part Three: Check</li> <li>Part Four and Part Five: Explain your answer</li> </ul>                                            | <b>Teacher Guide</b><br>• Assessment and Remediation                                                                                                       |
| 4. Model with mathematics.                                          | <ul> <li>Student Book</li> <li>Part One and Part Two: Your Turn</li> <li>Part Four and Part Five: Explain your answer</li> </ul>                                                                        | <ul> <li>Teacher Guide</li> <li>Many "Step by Step" Tips help<br/>students develop models for solving<br/>a problem.</li> <li>Hands-on Activity</li> </ul> |
| 5. Use appropriate tools strategically.                             | <b>Student Book</b><br>• Part Three and Part Four: Your Turn                                                                                                                                            | <b>Teacher Guide</b><br>• Hands-on Activity<br>• Reteaching Activity<br>• Real-World Connection                                                            |
| 6. Attend to precision.                                             | <b>Student Book</b><br>• Part One and Part Two: Let's Talk<br>• Part Four: Explain your answer                                                                                                          | <ul><li>Teacher Guide</li><li>Vocabulary in lesson introduction</li><li>Vocabulary Activity</li></ul>                                                      |
| 7. Look for and make<br>use of structure.                           | Student Book<br>• Lessons 1–11                                                                                                                                                                          | <b>Teacher Guide</b><br>• Math Background for Lessons 1–11                                                                                                 |
| 8. Look for and express regularity in repeated reasoning.           | <ul><li>Student Book</li><li>All lessons</li></ul>                                                                                                                                                      | <b>Teacher Guide</b><br>• Tips<br>• Challenge Activity                                                                                                     |

# **LESSON OBJECTIVES**

Children will:

- Make tens to add 3 one-digit numbers. (CCSS 1.OA.6)
- Break apart numbers to make tens to add and subtract. (CCSS 1.OA.6)
- Apply properties of addition to add 3 one-digit numbers. (CCSS 1.OA.3)

# PREREQUISITES

Children should be able to:

- Add fluently within 20.
- Subtract fluently within 20.

# **RELATED STAMS® LESSONS**

• Book A – Lesson 1

*Understand Addition and Subtraction* teaches children to count on to add and count back to subtract.

• Book A – Lesson 2

*Fact Families* introduces strategies to remember addition and subtraction facts.

# VOCABULARY

### PAGE 24

- add: combine two or more groups
- make ten: combine two or more numbers that add to 10

### PAGE 26

- subtract: take away, remove, or compare
- **break apart:** rewrite a number as the sum of two numbers

# MATH BACKGROUND

In this lesson, children learn strategies for adding and subtracting based on making ten.

Understanding different ways to make a ten, such as 1 + 9, 2 + 8, 3 + 7, etc. will help children to add and subtract more quickly. Children will begin by making ten to make adding three numbers easier by first adding two numbers to make a ten. To add 5 + 4 + 5, children will first add 5 + 5 to get 10 and then add 4 to get 14.

Children will then build upon this by learning how to break apart addends into numbers that will make a ten. For example, instead of adding 9 + 6, children will break 6 apart into 5 and 1 and then add 1 to 9 to get 10, and then add 5 to 10 to get 15. The same strategy can be used with subtraction. Children will learn to break apart the number they are subtracting so that they can subtract to get 10.

This lesson uses number line models to demonstrate how to break apart a number to subtract.

# **Modeled Instruction**



# **Guided Instruction**

| Solve.<br>8 + 7 + 3 =<br>a. Make ten.<br>8 + 7 + 3 =<br>8 + 10 =<br>b. Solve the number sentence.<br>8 + 10 = 18<br>Solution: 8 + 7 + 3 = 18 | First<br>add the<br>number<br>that mu-<br>ten. |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| <b>′our Turn → Solve.</b><br>1. What is 4 + 6 + 3?                                                                                           |                                                |
| ê <b>-</b>                                                                                                                                   |                                                |
| (A) /<br>(B) 10<br>(C) 12                                                                                                                    |                                                |
| <ul> <li>(A) 7</li> <li>(B) 10</li> <li>(C) 12</li> <li>● 13</li> </ul>                                                                      |                                                |

# AT A GLANCE

Children activate their background knowledge about addition and learn how to make a ten to make adding 3 one-digit numbers easier.

# **STEP BY STEP**

### PAGE 24

- Introduce the **Question** at the top of the page.
- Have children look at the connecting cubes shown in **Explore** and connect them to the number sentence.
- Read **Think** with children. Make sure children understand that numbers can be added in any order.
- Guide children through the steps in **Connect**. Point out to children that they should look for two numbers that make a ten first.

**ELL Support:** Children may have heard the word *make* used in different ways, so the phrase *make ten* may be confusing. Remind children that they make something when they put parts of something else together, like puzzle pieces. When they *make ten*, they look for numbers that add to ten.

- Organize children in pairs or groups for Let's Talk and monitor their discussions.
- Be sure children first make ten, then add the third number.

**Tip:** Tell children to either circle the two numbers that make ten or draw lines like in Connect so they remember which numbers they have already added.

### PAGE 25

- Read the **Think It Through** problem with children.
- Guide children as they solve the problem. Pause for children to fill in missing information. When they are finished, discuss how making ten makes adding 3 numbers easier.
- Monitor children as they complete **Your Turn**. Then discuss the correct answer.

**Error Alert:** Children who chose B may have forgotten to add **3**.

# 

See Hands-on Activity (page 57).

Number, Operations, and Algebraic Thinking

MakeTens to Add and Subtract 51